
Measurement and Inference in Wine Tasting

Richard E. Quandt1

Princeton University

1. Introduction

Numerous situations exist in which several judges rate a set of objects. Common professional situations
in which this occurs are certain types of athletic competitions (figure skating, diving) in which performance
is measured not by the clock but by “form” and “artistry,” and consumer product evaluations, such as those
conducted by Consumer Reports, in which a large number of different brands of certain items are compared
for performance. Some of these may be items where certain objective measures of performance do exist (such
as gas barbecue grills, air conditioners, etc.)2 But others may be evaluated purely on the basis of subjective
taste sensations, such as orange juice, spaghetti sauce, and the like. These situations are characterized by
the fact that a truly “objective” measure of quality is missing, and thus quality can be assayed only on the
basis of the (subjective) impressions of judges.

The tasting of wine is, of course, an entirely analogous situation. While there are objective predictors of
the quality of wine,3 which utilize variables such as sunshine and rainfall during the growing season, they
would be difficult to apply to a sample of wines representing many small vineyards exposed to identical
weather conditions, such as might be the case in Burgundy, and would not in any event be able to predict
the impact on wine quality of a faulty cork. Hence, wine tasting is an important example in which judges
rate a set of objects.

In principle, ratings can be either “blind” or “not blind,” although it may be difficult to imagine how

1 I am greatly indebted for useful comments to Burton G. Malkiel, Orley Ashenfelter and Victor Ginsburgh. The responsibility
for errors is, of course, mine.

2 See Consumer Reports, Vol. 63, No. 8, 1998.

3 See Ashenfelter, O., “The Hedonic Approach to Vineyard Site Selection.”
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a skating competition could be judged without the judges knowing the identities of the contestants. But
whenever possible, blind ratings are preferable, because they remove one important aspect of inter-judge
variation that most people would claim is irrelevant, and in fact harmful to the results, namely “brand
loyalty.” Thus, wine bottles are typically covered in blind tastings or wines are decanted, and identified
only with code names such as A, B, etc.4 But even blind tastings do not remove all sources of unwanted
variation. When we ask judges to take a position as to which wine is best, second best, and so on, we cannot
control for the fact that some people like tannin or are offended by traces of oxidation more than others.
Another source of variation is that some judge might rate a wine on the basis of how it tastes now, while
another judge rates the wine on how he or she thinks the wine might taste at its peak.5

Wine tastings can generate data from which we can learn about the charateristics of both the wines and
the judges. In Section 2, we concentrate on what the ratings of wines can tell us about the wines themselves,
while in Section 3 we deal with what the ratings can tell us about the judges. Both sets of questions
are interesting and can utilize straightforward statistical procedures. Finally, in Section 4 we consider the
problem of correctly identifying wines in a blind tasting and devise some procedures for testing the statistical
significance of such identifications.

2. The Rating of Wines

First of all, we note that there is no cardinal measure by which we can rate wines. Two scales for rating
are in common use: (1) the well-known ordinal rank-scale, by which wines are assigned ranks 1, 2, . . ., n, and
(2) a “grade”-scale, such as the well-publicized ratings by Robert Parker based on 100 points.6 The grade
scale has some of the aspects of a cardinal scale, in that intervals are interpreted to have meaning, but is
not a cardinal scale in the sense in which a measure of weights is one.

Ranking Wines. We shall assume that the are m judges and n wines; hence a table of ranks is an m× n

4 In informal wine tastings, it may be difficult to remove all traces of this effect if, for example, the organizer of the wine
tasting, who is responsible for decanting bottles and assigning code letters to them, participates in the tasting. Even if he
makes no effort to remember which code letter corresponds to which wine, it may well be the case that some residual memory
affects his ratings.

5 In order to eliminate this source of variation, the iron-clad rule in one wine-tasting group is that wines must be judged by
how they taste at the time of the tasting, with no regard to how they might taste in the future. But it is obvious that this rule
is difficult to enforce. Another difficulty is that the wines may often have different tastes at different time intervals after the
bottles have been opened.

6 This is by no means unique. La Villa des Fleurs in Talloires employs a 7-point scale (*=Exceptionnel, 5=Très grande année,
4=Grande année, 3=Bonne année, 2=Année passable, 1=Petite année, −=Année médiocre), Taillevent a 10-point scale, The
New York Times alternately a 10-point scale (May 22, 1991), or a 20-point scale (December 16, 1981), or in recent years a
6-point scale.
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table and for m = 4 and n = 3 might appear as

Table 1. Rank Table for Judges

Judge Wine − > A B C

Orley 1. 2. 3.
Burt 2. 1. 3.
Frank 1. 3. 2.
Richard 2. 1. 3.

Rank Sums 6. 7. 11.

Notice that no tied ranks appear in the table. The organizer of a wine tasting clearly has a choice of
whether tied ranks are or are not permitted. My colleagues and my preference is not to permit tied ranks,
since tied ranks encourage “lazy” tasting; when the sampled wines are relatively similar, the option of using
tied ranks enables the tasters to avoid hard choices. Hence, in what follows, no tied ranks will appear (except
when wines are graded, rather than ranked). What does the table tell us about the group’s preferences?
The best summary measure has to be the rank sums for the individual wines, which in the present case turn
out to be 6, 7, and 11 respectively. Clearly, wine A appears to be valued most highly and wine C the least.

A slightly different interpretation of the rank sums is in terms of “votes against.” We might regard each
rank assigned to a wine as a vote against it. A rank of “2” is a slightly weightier vote against a wine than a
rank of “1”, whereas a rank of “3” is a still weightier vote against it. The rank sums can also be expressed
as total votes against: thus, for wine A the total votes against is 2 × 1 + 2 × 2 = 6, because it received 2
votes of “1” and two votes of “2.” It is noteworthy that if there are m judges and n wines the smallest votes
against that a wine can theoretically obtain is m × 1 = m and the largest is m × n = mn.

The real question is whether one can say that a rank sum is significantly low or significantly high, since
even if judges assign rank sums completely at random, we would sometimes find that a wine has a very low
(high) rank sum.

Kramer computes upper and lower critical values for the rank sums and asserts that we can test the
hypothesis that a wine has a significantly high (low) rank sum by comparing the actual rank sum with the
critical values; if the rank sum is greater (lower) than the upper (lower) critical value, the rank sum would
be declared significantly high (low).7 If, in assigning a rank to a particular wine, each of m judges chooses

7 See Kramer, A., “A Quick, Rank Test for Significance of Difference in Multiple Comparisons,” Food Technology, August,
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exactly one number out of the set {1, 2, . . . , n}, the total number of rank patterns is nm and it is easy to
determine how many of the possible rank sums are equal to m (the lowest possible rank sum), . . ., and nm (
the highest possible rank sum). From this it is easy to determine critical low and high values such that 5%
of the rank sums are lower than the low and 5% are higher than the high critical value.8 This test is entirely
appropriate if one wishes to test a single rank sum for significance.

The problem with the test is that typically one would want to make a statement about each and every
wine in a tasting; hence one would want to compare the rank sums of all n wines to the critical values;
some of the rank sums might fall below the smaller of the critical values, some might exceed the larger of
the critical values, and others might be in-between. Applying the test to each wine, we would pronounce
some of the wines statistically significantly good in the tasters’ opinion, some significantly bad, and some
not significantly good or bad. Unfortunately, this is not a valid use of the test. Consider the experiment of
judges assigning ranks to wines one at a time, beginning with wine A. Once a judge has assigned a particular
rank to that wine, say “1”, that rank is no longer available to be assigned by that judge to another wine.
Hence, the remaining rank sums can no longer be thought to have been generated from the universe of all
possible rank sums, and in fact, the rank sums for the various wines are not independent.

To examine the consequences of applying the Kramer rank sum test to each wine in a tasting, we resorted
to Monte Carlo experiments in which we generated 10,000 random rankings of n wines by m judges; for each
of the 10,000 replications we counted the fractions of rank sums that were signficantly high and significantly
low by the Kramer criterion, and then classified the replications in a two-way table in which the (i, j)th entry,
(i = 0, . . . , n, j = 0, . . . , n) indicates the number of replications in which i rank sums were significantly low
and j rank sums were significantly high. This experiment was carried out for (m = 4, n = 4), (m = 8, n = 8)
and (m = 8, n = 12). The results are shown in Tables 2, 3, and 4.

1956, pp. 391-2.

8 Kramer gives critical values for the 0.05 and 0.01 levels of significance. His values are correct if one notes that, contrary to
his assertion, the observed value needs to be not greater or smaller than the relevant critical value, but greater than or equal
or smaller than or equal to the critical value in question.
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Table 2. Fraction of Significant Rank Sums according to Kramer for m = 4, n = 4.

j =
i 0 1 2

0 0.6414 0.1221 0

1 0.1261 0.1070 0.0016

2 0 0.0012 0.0006

Table 3. Fraction of Significant Rank Sums according to Kramer for m = 8, n = 8.

j =
i 0 1 2 3

0 0.4269 0.1761 0.0093 0

1 0.1774 0.1532 0.0211 0.0003

2 0.0097 0.0192 0.0060 0

3 0.0002 0.0003 0.0002 0.0001

Table 4. Fraction of Significant Rank Sums according to Kramer for m = 8, n = 12.

j =
i 0 1 2 3 4

0 0.3206 0.1874 0.0252 0.0004 0

1 0.1915 0.1627 0.0357 0.0021 0.0001

2 0.0245 0.0332 0.0121 0.0011 0

3 0.0006 0.0013 0.0012 0.0003 0

Thus, for example, in Table 4, 1,915 out of 10,000 replications had a sole rank sum that was significantly
low by the Kramer criterion, 1,627 replications had one rank sum that was signficantly low and one rank
sum that was significantly high, 357 replications had one significantly low and two significantly high rank
sums, and so on. It is clear that the Kramer test classifies way too many rank sums as significant. At the
same time, if we apply the Kramer test to a single (randomly chosen) column of the rank table, the 10,000
replications give significantly high and low outcomes as shown in Table 5:
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Table 5. Application of Kramer Test to a Single Rank Sum in Each Replication

Significantly
(m,n) High Low

(4, 4) 0.0552 0.0584

(8, 8) 0.0507 0.0517

(8, 12) 0.0478 0.0467

While the observed rejection frequencies of the null hypothesis of “no significant rank sum” are statistically
significantly different from the expected value of 500, using the normal approximation to the binomial
distribution, the numbers are, at least, “in the ball-park,” while in the case of applying the test to every
rank sum in each replication they are not even near.

This suggests that a somewhat different approach is needed to testing the rank sums in a given tasting.
Each judge’s ranks add up to n(n+1)/2 and hence the sum of the rank sums over all judges is mn(n+1)/2.
Hence, denoting the rank sum for the jth wine by sj , j = 1, . . . , n, we have

n∑
j=1

sj =
mn(n + 1)

2
,

which, in effect, means that the rank sums for the various wines are located on an (n − 1)-dimensional
simplex. The center point of this simplex has coordinates m(n + 1)/2 in every direction, and if every wine
had this rank sum, there would be no difference at all among the wines. It is plausible that the farther a set
of rank sums (s1, . . . , sn) is located from this center, the more pronounced is the departure of the rankings
from the average. However, judging the potential significance of the departure of a single rank sum from the
center point has the same problem as the Kramer measure. Therefore we propose to measure the departure
of the whole wine tasting from the average point by the (squared) sum of distances of each rank sum from
the center points, i.e., by

Sd =
n∑

j=1

(
sj − m(n + 1)

2

)2

.

In order to determine critical values for Sd, we resorted to Monte Carlo experiments. Random rank
tables were generated for m judges and n wines (m = 4, 5, . . . , 12;n = 4, 5, . . . , 12), and the Sd-statistic was
computed for each of 10,000 replications; the critical value of Sd at the 0.05 level was obtained from the
sample cumulative distributions. These are displayed in Table 6 (see Appendix).
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It is important to keep in mind the correct interpretation of a significant Sd-value. Such a value no longer
singles out a wine as significantly “good” or “bad,” but singles out an entire set of wines as representing a
significant rank order. In the example below,

Table 7. Rank Table

Judge Wine − > A B C D

Orley 1 2 3 4
Burt 2 1 4 3
Frank 3 1 2 4
Richard 2 1 4 3

Rank Sums 8 5 13 14

the rank sums for the four wines are 8, 5, 13, 14, and the Kramer test would say only that wine D is
significantly bad. In the present example, D = 54, and the entire rank order is significant at the 0.05 level;
i.e., B is significantly better than A, which is significantly better than C, which is significantly better than
D.

A final approach to determining the significance of rank sums is to perform the Friedman two-way analysis
of variance test.9 It tests the hypothesis that the ranks assigned to the various wines come from the same
population. The test statistic is

F =
[

12
mn(n + 1)

n∑
j=1

s2
j

]
− 3m(n + 1)

if there are no ties, and is

F =
12

∑n
j=1 s2

j − 3m2n(n + 1)2

mn(n + 1) +
mn−

∑
m

i=1

∑
τi

j=1
t3
ij

n−1

if there are ties, where τi is the number of sets of tied ranks for judge i (if there are no ties for judge i, then
τi = n) and tij is the number of items that are tied for judge i in his/her jth group of tied observations (if

9 See Siegel, Sidney and N. John Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, McGraw Hill, 1988,
pp.180.
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there are no ties, tij = 1). It is easy to verify that the second formula reduces to the first if there are no ties.
Critical values for small m and n are given in Siegel and Castellan; for large values F is distributed under
the null hypothesis of no differences among the rank sums approximately as χ2(n − 1). It is clear that the
Friedman test and the D-test have very similar underlying objectives.

Grading Wines. Grading wines consists of assigning “grades” to each wine, with no restrictions on
whether ties are permitted to occur. While the resulting scale is not a cardinal scale, some meaning does
attach to the level of the numbers assigned to each wine. Thus, if on a 20-point scale, one judge assigns
to three wines the grades 3, 4, 5, while another judge assigns the grades 18, 19, 20, and a third judge
assigns 3, 12, 20, they are seen to be in complete harmony concerning the ranking of wines, but have serious
differences of opinion with respect to the absolute quality. I am somewhat sceptical about the value of the
information contained in such differences. But we always have the option of translating grades into ranks and
then analyzing the ranks with the techniques illustrated above. For this purpose, we reproduce the grades
assigned by 11 judges to 10 wines in a famous 1976 tasting of American and French Bordeaux wines.10

Table 8. The Wines in the 1976 Tasting

Wine Name Final Rank

A Stag’s Leap 1973 1st

B Ch. Mouton Rothschild 1970 3rd

C Ch. Montrose 1970 2nd

D Ch. Haut Brion 1970 4th

E Ridge Mt.Bello 1971 5th

F Léoville-las-Cases 1971 7th

G Heitz Marthas Vineyard 1970 6th

H Clos du Val 1972 10th

I Mayacamas 1971 9th

J Freemark Abbey 1969 8th

10 For a Bayesian analysis of this tasting, see Lindley, Dennis V, “The Analysis of a Wine Tasting,”
http://www.liquidasset.com/lindley.htm.
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Table 9 contains the judges’ grades and Table 10 the conversion of those grades into ranks. It should
be noted that grades can be converted into ranks in several ways. The method we are adopting here is
to convert each judge’s grades into ranks. But if one were to be interested only in the aggregate rank
assigned to the wines, one could also add the grades and then rank the grade totals. That method has the
disadvantage of being excessively dependent on outlier grades, which is attenuated by ranking the individual
judges’ grades.11 Since grading permits ties, the ranks into which the grades are converted by the method
selected in this paper also have to reflect ties; thus, for example, if the top two wines were to be tied in a
judge’s estimation, they would both be assigned a rank of 1.5. Also note that grades and ranks are inversely
related: the higher a grade, the better the wine, and hence the lower its rank position.

If we apply the critical values as recommended by Kramer, we would find that wines A, B, and C are
significantly good (in the opinion of the judges) and wine H is significantly bad. The value of the Sd-statistic
is 2,637, which is significant for 11 judges and 10 wines according to Table 6, and hence the entire rank order
may be considered significant. Computing the Friedman two-way analysis of variance test yields a χ2 value
of 23.93, which is significant at the 1 percent level. Hence, the two tests are entirely compatible and the
Friedman test rejects the hypothesis that the medians of the distributions of the rank sums are the same for
the different wines.

In this section we compared several ways of evaluating the significance of rank sums. In particular, we
argued that the Sd-statistic and the Friedman two-way analysis of variance tests are more appropriate than
the Kramer statistic.

11 However, analyzing preferences among wines on the basis of rank totals has its own disadvantages; to wit, that method
violates the axiom of the Independence of Irrelevant Alternatives.
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Table 9. The Judges’s Grades

Wine

Judge A B C D E F G H I J

Pierre Brejoux 14.0 16.0 12.0 17.0 13.0 10.0 12.0 14.0 5.0 7.0

A. D. Villaine 15.0 14.0 16.0 15.0 9.0 10.0 7.0 5.0 12.0 7.0

Michel Dovaz 10.0 15.0 11.0 12.0 12.0 10.0 11.5 11.0 8.0 15.0

Pat. Gallagher 14.0 15.0 14.0 12.0 16.0 14.0 17.0 13.0 9.0 15.0

Odette Kahn 15.0 12.0 12.0 12.0 7.0 12.0 2.0 2.0 13.0 5.0

Ch. Millau 16.0 16.0 17.0 13.5 7.0 11.0 8.0 9.0 9.5 9.0

Raymond Oliver 14.0 12.0 14.0 10.0 12.0 12.0 10.0 10.0 14.0 8.0

Steven Spurrier 14.0 14.0 14.0 8.0 14.0 12.0 13.0 11.0 9.0 13.0

Pierre Tari 13.0 11.0 14.0 14.0 17.0 12.0 15.0 13.0 12.0 14.0

Ch. Vanneque 16.5 16.0 11.0 17.0 15.5 8.0 10.0 16.5 3.0 6.0

J.C. Vrinat 14.0 14.0 15.0 15.0 11.0 12.0 9.0 7.0 13.0 7.0
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Table 10. Conversion of Grades into Ranks

Wine

Judge A B C D E F G H I J

Pierre Brejoux 3.5 2.0 6.5 1.0 5.0 8.0 6.5 3.5 10.0 9.0

A. D. Villaine 2.5 4.0 1.0 2.5 7.0 6.0 8.5 10.0 5.0 8.5

Michel Dovaz 8.5 1.5 6.5 3.5 3.5 8.5 5.0 6.5 10.0 1.5

Pat. Gallagher 6.0 3.5 6.0 9.0 2.0 6.0 1.0 8.0 10.0 3.5

Odette Kahn 1.0 4.5 4.5 4.5 7.0 4.5 9.5 9.5 2.0 8.0

Ch. Millau 2.5 2.5 1.0 4.0 10.0 5.0 9.0 7.5 6.0 7.5

Raymond Oliver 2.0 5.0 2.0 8.0 5.0 5.0 8.0 8.0 2.0 10.0

Stev. Spurrier 2.5 2.5 2.5 10.0 2.5 7.0 5.5 8.0 9.0 5.5

Pierre Tari 6.5 10.0 4.0 4.0 1.0 8.5 2.0 6.5 8.5 4.0

Ch. Vanneque 2.5 4.0 6.0 1.0 5.0 8.0 7.0 2.5 10.0 9.0

J.C. Vrinat 3.5 3.5 1.5 1.5 7.0 6.0 8.0 9.5 5.0 9.5

Rank Totals 41.0 43.0 41.5 49.0 55.0 72.5 70.0 79.5 77.5 76.0

Group Ranking 1 3 2 4 5 7 6 10 9 8

3. Agreement or Disagreement among the Judges

There are at least two questions we may ask about the similarity or dissimilarity of the judges’ rankings
(or grades). The first one concerns the extent to which the group of judges as a whole ranks (or grades) the
wines similarly. The second one concerns the extent of the correlation between a particular pair of judges.

The Overall Agreement among the Judges. The natural test for the overall concordance among the
judges’ ratings is the Kendall W coefficient of concordance.12 It is computed as

W =
∑n

i=1(ri − r)2

n(n2 − 1)/12

12 Siegel and Castellan, op. cit., pp. 262–272.
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where ri is the average rank assigned to the ith wine and r is the average of the averages. Siegel and Castellan
again provide tables for testing the null hypothesis of no concordance for small values of m and n; for large
values, m(n − 1)W is approximately distributed as χ2(n − 1). In the case of the wine tasting depicted in
Tables 9 and 10, W = 0.2417 and the probability of obtaining a value this high or higher under a random
assignment of ranks is 0.0059, a highly significant result showing strong agreement among the judges.

It may be interesting to examine the behavior of Kendall’s W in a large number of tastings carried out
by a highly stable group of wine tasters. Such a group is the Liquid Assets Wine Group, which consists
of eight individuals who meet about eight to nine times a year. If a member cannot attend a tasting, he
may or may not be replaced by an ad hoc invitee; on very rare occasions, the number of tasters is enlarged
beyond the core group. We have been analyzing the tastings systematically since March 9, 1998; a total of
76 tastings have taken place in which Kendall’s W was computed.

The first question to be answered is whether there is any trend over this period in the W coefficient.
However, looking at the W coefficient itself would not be revealing, because the significance of a particular
W depends both on the number of tasters and the number of wines, both of which vary from time to time.
Thus, for example, W = 0.4 is not significant (at the 0.05 level) if the number of judges is 6 and the number
of wines 4, but the same value of W is significant if the judges number 6 and the wines 5. It is therefore more
appropriate to examine the p-value corresponding to the value of W , the probability that a value of W as
high or higher than the observed one would have been obtained if the judges assigned ranks at random. The
first question therefore is what the behavior of these p-values is over time. They are displayed in Figure 1,
in which the vertical axis denotes p-values and the horixontal axis denotes which tasting they correspond to.
It is fairly clear by inspection, without any sophisticated tests, that the p-values fluctuate randomly, getting
neither smaller nor larger as time passes. Hence there is no reason to believe that the agreement among the
judges has gotten any better as time has passed.

Figure 1. Time Series of p-values for Kendall’s W
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But an examination of the p-values reveals that 49% are smaller than 0.05 and 57% are smaller than
0.10, indicating that substantial agreement existed among the judges more than half the time. A formal
test of this hypothesis may be conducted as follows. We may regard the sample realizations of p-values as
drawings from some distribution over the unit interval. If the judges judged wines randomly, these drawings
would be from a uniform distribution.13 Hence it is relevant to compare the cumulative sample distribution
of p-values with the cumulative distribution of U(0, 1). The two distributions are displayed in Figure 2, in
which the straight line corresponds to the cumulative distribution of U(0, 1).

Figure 2. Cumulative Sample Distribution of p-values and the Cumulative U(0, 1)

It is obvious by inspection that the two cumulatives are vastly different. For a formal test, it is appropriate
to use the Kolmogorov-Smirnov one-sample test to test the hypothesis that the realizations come from the
U(0, 1) distribution. In fact, the maximal vertical difference between the sample cumulative distribution and
the distribution function of the uniform is 0.5530; the Kolmogorov-Smirnow statistic is 4.8211, with a critical
value at the 0.05 level of 1.3588, indicating a highly significant departure from the uniform distribution. But
exploration of what might explain the differences among the p-values has not been able to shed further light
on this. Regressing the p-values on a trend and on six dummy variables with values of 0 or 1 if the tasting
was, respectively, one of Bordeaux, Burgundy, Rhone, German, Italian or Spanish, or American wines has
yielded no significant coefficients, suggesting that the degree of agreement does not depend on either the
trend variable or on what is being tasted.

Pairwise correlations. The pairwise correlations between the judges can be assessed by using either

13 Let X be a random variable, x a particular value, and let y = G(x), where G() is the cumulative distribution function of
X. Then Pr{Y ≤ y} = Pr{G(X) ≤ G(x)} = G(x) = y, which proves that Y is uniform on (0, 1).
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Spearman’s ρ and Kendall’s τ .14 Spearman’s ρ is simply the ordinary product-moment correlation based
on variables expressed as ranks, and thus has the standard interpretation of a correlation coefficient. The
philosophy underlying the computation of τ is quite different. Assume that we have two rankings given by r1

and r2, where these are n-vectors of rankings by two individuals. To compute τ , we first sort r1 into natural
order and parallel-sort r2 (i.e., ensure that the ith elements of r1 and r2 both migrate to the same position
in their respective vectors). We then count up the number of instances in which in r2 a higher rank follows
a lower rank (i.e., are in natural order) and the number of instances in r2 in which a higher rank precedes a
lower rank (reverse order). τ is then

τ =
Number of natural order pairs− Number of reverse order pairs(

n
2

)

Clearly, ρ and τ can be quite different and it does not make sense to compare them. In fact, for n = 6,
the maximal absolute difference ρ− τ can be as large as 0.3882 and the cumulative distributions of ρ and τ

obtained by calculating their values for all possible permutations of ranks are as shown in Figure 2, where
the step-function-like cumulative is that of τ . Since the interpretation of τ is a little less natural, I prefer to
use ρ, but from the point of view of significance testing it does not make a difference which is used; in fact,
Siegel and Catellan point out that the relation between ρ and τ is governed by the inequalities

−1 ≤ 3τ − 2ρ ≤ 1

.

14 Siegel and Castellan, op. cit., pp. 235-54.
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Figure 3. Cumulative Distributions for ρ and τ

A final calculation that may be amusing, even though its statistical assessment is not entirely clear, is to
calculate the correlation between the rankings of a given judge with the average ranking of the remaining
judges.15 To accomplish this, we must first average the rankings of the remaining judges and then find
the correlation between this average ranking and the ranking of the given judge. Obviously, repeating this
calculation for each of the n judges gives us n ρs that are not independent of one another, and hence the
significance testing of these n correlations is unclear. But it is an amusing addendum to a wine tasting,
since it gives us some insight as to who agrees most with “the rest of the herd” (or, conversely, who is the
dominant person with whom the “herd” agrees) and who is the real contrarian. In the case of the 1976 wine
tasting, the table of correlations is as follows:

15 Another interesting correlation is between the rankings and the prices of the wines. We calculate this only occasionally,
since often the relevant price information is missing.
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Table 11. Correlation of Each Judge with Rest of Group

Judge Spearman’s ρ

Pierre Brejoux 0.4634

A. D. Villaine 0.6951

Michel Dovaz -0.0675

Pat. Gallagher -0.0862

Odette Kahn 0.2926

Ch. Millau 0.6104

Raymond Oliver 0.2455

Stev. Spurrier 0.4688

Pierre Tari -0.1543

Ch. Vanneque 0.4195

J.C. Vrinat 0.6534

4. The Identification of Wines

We now change the focus of our investigation from how well the judges like the wines and what that can
tell us to how good they are in identifying them. This is an aspect of wine tasting that can be both satisfying
and challenging. By identification we do not, of course, mean that the judges would have to identify the
wines out of the entire universe of all possible wines. It is clear that judges have to be given some clue
concerning the general category of the wines they are drinking, otherwise it is quite likely that no useful
results will be obtained from the identification exercise, unless the judges are truly great experts.

There are at least two possibilities. The first one is that the judges have to associate with each actual
wine name the appropriate code letter (A, B, C, etc.) that appears on a bottle. In this case, we continue to
adopt the convention that at the beginning of the tasting the judges are presented with a list of the wines to
be tasted (presumably in alphabetical order, lest the order of the wines in the list create a presumption that
the first wine is wine A, the second wine B, and so on). Thus, if eight wines are to be tasted, the task of the
judges is to match the actual wine names with the letters A, B, C, etc. The question we shall investigate
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is how we can test the hypothesis that the identification pattern selected by a judge is no better than what
would be obtained by a chance assignment.

The second possibility is that the judges are not given the names of the wines but are given their “type.”
Thus, for example, one could have a tasting of cabernet sauvignons from Bordeaux together with cabernet
sauvignons from California (as in the 1976 tasting discussed in the previous section), or one could have a
tasting of Burgundy pinot noirs, together with Oregon pinot noirs and South African pinot noirs from the
Franschoek or Stellenbosch area. The judges would merely be told the number of wines of each type in the
tasting, and their task would be to identify which of wines A, B, C, etc., is a Bordeaux wine and which a
California wine.

Guessing the Name of Each Wine. Consider the case in which n wines are being tested and let P be an
n×n matrix, the rows of which correspond to the “artificial” names of the wines (A, B,. . .) and the columns
of which correspond to the actual names of the wines. We will say that the label in row i is assigned to
(matched with) the label in column j if the element aij = 1 and is not assigned to the label in column j if
aij = 0. It is obvious that the matrix P is a valid identification matrix if and only if (1) each row has exactly
one 1 in it and n−1 0s, and (2) each column has exactly one 1 in it and n−1 0s. Under these circumstances,
an identification matrix is a permutation matrix, i.e., it is a matrix that can be obtained from an identity
matrix by permuting its rows. Obviously, the “truth” can also be represented by a permutation matrix; its
ijth element is 1 if an only if artificial label i actually corresponds to real label j. This permutation matrix
will be denoted by T .

To measure the extent to which a person’s wine identification (as given by his or her P matrix) corresponds
to the truth (the T matrix), we propose the following measure C :

C = tr(PT )/n

where n is the number of wines, which gives just the percentage of wines correctly identified. The justification
for this measure emerges from the following considerations.

First note that every permutation matrix is its own inverse; i.e.,

P = P−1.

The reason is that if we interchange the ith and jth rows of an identity matrix and then premultiply a given
matrix by it, that will have the effect of interchanging in the given matrix the same pair of rows. Hence,
premultiplying the matrix P by itself, interchanges those rows in P , yielding an identity matrix for the
product. Thus, if a person’s P matrix is identical to T , PT is an identity matrix, the trace of which is equal
to n; hence C = 1.0 in the case in which a person identifies each wine correctly. Moreover, C is monotone in
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the number of wines correctly identified and if no wines are correctly identified, C = 0. Therefore, in order
to judge whether the observed value of C is significant (under the null hypothesis of random identification
by the judge), we require the sampling distribution of C .

The are n! permutation matrices, and any one of these matrices P can be paired with any one of n! possible
matrices T , which suggests a formidable number of possible outcomes. However, the possible outcomes are
identical for each of the possible T matrices; hence without any loss of generality, we may fix T as the
identity matrix. Then PT = P and to compute C it is sufficient to count up how many of the possible n! P
matrices have trace equal to 0, 1, . . ..

To find the sampling distribution of the trace is formally identical with the following problem. Let there
be n urns, labelled A, B, C, etc, and let there be n balls, labelled similarly. We shall randomly place one
ball in each urn; we then ask what the probability is that exactly k of the urns contain a ball that has the
same label as the urn.

It is obvious that the total possible ways in which balls can placed in urns is n!. It is also obvious that
there is exactly one way (out of n! ways) that every ball is in the urn with the same label, and it is also
obvious that it is impossible for exactly n − 1 balls to be in the like-labelled urn (since if n − 1 balls are,
then the last one must also be in a like-labelled urn).16

Denote by M(i, j) the number of ways in which you can place j balls in j urns so that exactly i balls are in
like-labelled urns. As long as i �= j−1, having exactly i balls in the like-labelled urns can be done in

(
j
i

)
ways.

The remaining urns and balls should produce no match if we want exactly i matches; the number of ways
that that can occur is, by definition, M(0, j − i). The total number of ways then is M(i, j) =

(
j
i

)
M(0, j − i).

16 This immediately clarifies why the identification problem is not a simple binomial problem. One could have (mistakenly)
thought that for each judge there is a probability p that he or she will identify a single wine correctly, and thus the probability

of identifying x out of n wines would just be
(

n
x

)
px(1 − p)n−x. This is clearly incorrect for the case we are considering.
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For a value of n, the totality of outcomes is given by

M(n, n) = 1,

M(n − 1, n) = 0,

M(n − 2, n) =
(

n

n − 2

)
M(0, 2),

M(n − 3, n) =
(

n

n − 3

)
M(0, 3),

. . .

M(1, n) = nM(0, n − 1),

M(0, n) = n!−
n∑

j=1

M(j, n)

with initial conditions being given by M(2, 2) = 1, M(1, 2) = 0 and M(0, 2) = 1. The M(i, n) are easily
computed because the above equations provide a simple recursive scheme for the calculations. We obtain
the probability of i matches, i = 0, . . . , n with n urns by dividing each M(i, n) by n!. These probabilities
are shown in Table 12 (see Appendix).

It is clear that irrespective of the number n of wines, a trace of 4 or more is a highly significant result
and a trace in excess of 2 is still significant at the 0.1 level of significance for n > 3. It is also remarkable
that the distribution converges very rapidly in n to a limiting form.

The other question that is of interest is whether the judges, as a whole, tend to agree or tend not to agree
with one another with respect to wine identification. Here we propose the following measure of the degree
of agreement among the judges.

Let m be the number of judges and denote their identification matrices by Pi, i = 1, . . . , n. Let Q =∑n
i=1 Pi and let qij be the typical element of Q. Since the sum of the elements of each Pi is exactly n,

if there m judges, the mean value of each element of Q is mn/n2 = m/n. We propose as the measure of
concordance the variance of the elements of Q, i.e.,

V =
1
n2

n∑
i=1

n∑
i=1

(qij − m

n
)2

If all the judges pick the same permutation matrix, n of the elements of Q will be equal to m and the
remaining ones will be zero. In that case the variance over the elements of Q is

V =
1
n2

[
n

(
m − m

n

)2

+ n(n − 1)
(m

n

)2
]

=
m2(n − 1)

n2
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If the judges predominantly pick P matrices that are very different, the elements of Q will be relatively
more similar and the variance will be small. In order to determine what level of variance is significant, we
have to determine the sampling distribution of the variance under the null hypothesis that the judges pick
P matrices at random.

The sampling distributions were determined for the number of wines i, i = 4, . . . , 12 and the number of
judges j, j = 4, . . . , 15 by Monte Carlo experiments. An experiment for given i and j consisted of fixing
the value of j and picking one out of the i! permutation matrices and then computing V as shown above.
Each experiment was replicated 10,000 times. Table 13 contains the 10 percent and Table 14 the 5 percent
significance levels for V (see Appendix).

Tables 13 and 14 are heuristic, but we may proceed also in a more formal manner by asking what the
probabilities are that in a group of m judges with n wines the sum of the traces of the Pi matrices is,
respectively 0, 1, 2, etc. Assuming that the judges make their identifications independently of one another
(which clearly suggests that viva voce identifications are to be eschewed), the sum of correct identifications
by m judges has a distribution that is the appropriate discrete convolution of the distributions in Table 12.
For example, with eight wines, under the null hypothesis of random identifications, the 10% critical value is
5 for m = 2, 6 for m = 3 and 7 for m = 4. In other words, if four judges jointly succeed making 7 or more
correct identifications, we may reject the hypothesis that, as a whole, the group was behaving randomly.

Identifying Types of Wines. We assume, in conformity with previous assumptions, that judges are
informed of how many wines of Type I and how many of Type II are present in the sample to be tasted.17

Before we present tables of the distributions of the number correctly identified under the null of random
assignments, consider the following example. Let us assume that there are nine wines in all, four of which
are of type X and five of which are of type Y and let us depict the “true” pattern in the sample as

X X X X Y Y Y Y Y

Now imagine that a particular judge guesses the pattern to be

X X X Y X Y Y Y Y

In that case, he/she will have identified seven wines correctly by type. In how many ways can this occur?
Making two mistakes implies that one X-type wine is identified as a Y and one Y -type wine is identified as
an X. In the present case you can choose the X which will be misidentified

(
4
1

)
ways and the Y which will

17 If, on the contrary, judges were only told that every wine tasted is either a Bordeaux cabernet sauvignon or a California
cabernet, with no indication of how many wines of each type are present in the sample, then the problem could, indeed, be
formulated as a straightforward binomial problem.
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be misidentified as an X in
(
5
1

)
ways, for a total of

(
4
1

)(
5
1

)
= 20 ways. Now, how can you have exactly six

or eight wines identified correctly? The answer is that there are no ways in which you can have six or eight
correct identifications: for example, to reduce the number of correct identifications, an additional X must be
identified as a Y ; but that means that an additional Y will also be identified as an X, hence if seven correct
identifications is possible, then neither six nor eight will ever be possible. In fact, since if there are n wines,
with n1 of type X and n2 of type Y , n correct identifications is always a possible outcome, and the number
of possible correct identifications is n, n − 2, n − 4, with the last term in the series for the possible correct
number of identifications being n − 2min(n1, n2).

We display the distributions for the number of wines correctly identified for selected values of n1 and n2

in Table 15 (see Appendix).
It is easily seen that there generally does not exist a clear-cut critical value for the number of correctly

identified wines at the 5 percent or 10 percent level, because of the discreteness of the distributions. So, for
example, if n1 = 4 and n2 = 5, 7 or more correctly identified wines mean that randomness is rejected at the
0.167 (= 0.159 + 0.008)level. Eight or more correctly identified wines reject the randomness hypothesis at
roughly the 0.1 level for the next two columns, nine (respectively ten) reject randomness at roughtly the .05
level for the last two columns.

The last case we consider is the one in which there are several types of wines. In the first instance, we
consider the case with three different types of wines, which we label with X, Y , and Z. An example would be
provided by a case in which we are comparing three different vintages of two chateaux. In such a situation,
there are two questions that could be asked: (1) How well do the tasters identify the different vintages, and
(2) How well can the tasters identify the different chateaux; i.e., to what extent can they pick out the wines
that are from the same chateau? The situation is quite different in this case, although two facts remain true:
(1) there is exactly one way in which the number of correct identifications can be equal to the number of
wines n, and (2) there is no way in which exactly n− 1 wines are correctly identified. But it is no longer the
case that the number of correct identifications is either always an even number or always an odd number.
Consider the “true” pattern

X X Y Y Y Z Z Z

The judges’ following potential identification patterns produce, respectively, 0, 1, 2, 3, 4, 5, 6, and 8 correct
identifications:

Y Y Z Z Z X X Y

Y Z Z Z Y X X Y

X X Z Z Z Y Y Y

X Y Z Z Y Y Z X
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X X Y Z Z Z Y Y

X Y Y Y Z X Z Z

X Y Y Y X Z Z Z

X X Y Y Y Z Z Z

For a few selected values of n1, n2, n3 we display the probability distributions in Table 16 (see Appendix).
Thus, with three wines of type X, three of type Y and five of type Z, one needs at least seven correct

identifications in order to assert at approximately the 0.05 level that the result is significantly better than
random.

A final question is how the critical value depends on how many types of wines there are in a tasting.
There is obviously no straightforward answer, because there are too many things that can vary: the total
number of wines, the number of types of wines, and the number of wines within each type. But consider a
simplified experiment in which we fix the total number of wines at some power of 2; say 27 = 128. We could
then consider alternately 2 types of wines with 64 wines of each type, or 4 types with 32 wines of each type,
or 8 types with 16 wines each, 16 types with 8 wines each, 32 types of 4 wines each, and finally 64 types of
2 wines each. It is intuitively obvious that if we guess randomly, we will tend to score the highest degree
of correct identification in the first case and the lowest in the last. For imagine that in the first case we
arbitrarily identify the first 64 wines as type X and the last 64 as type Y . If the order in which the wines
have been arranged is random, we shall correctly identify on the average 64 of the 128 wines. In the last case,
when there are 64 types of 2 wines each, the average number of identifications will be much smaller. To look
at this in another way, in the first case there is only a single outcome in which no wine is correctly identified
(i.e., the outcome in which the judge guesses the first 64 wines to be of type X, whereas in reality they are
all of type Y , but in the last case there is a huge number of possible outcomes in which no wine is correctly
identified. We would therefore expect that as the number of types of wine in the tasting declines (with the
number of wines in each type increasing), the critical value above which we reject the null hypothesis of
randomness in the identification has to increase.

To further illustrate this, take an extreme case in which there are two types of wines, and ten bottles are
arrayed left to right as follows:

X Y Y Y Y Y Y Y Y Y

In how many ways can all ten wines be identified correctly? Our lone X-guess must be assigned to the
first spot, and if we make the assignments at random, the probability of this occurring is 0.1. If we do not
assign X to the first spot, exactly eight wines will be identified correctly, and hence the probability of that
occurrence is 0.9. No other outcome is possible.
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We finally display the critical values at the 0.05 and 0.10 levels for a large number of different cases in
Table 17 (see Appendix). In this table an entry such as n; i, j, k denotes the case in which there are n wines
with three subgroups containing i and j and k items respectively.

5. Concluding Comments

In this paper, we considered three types of questions: (1) How do we use the rankings of wines by a
set of judges to determine whether some wines are perceived to be significantly good or bad, (2) How do
we judge the strength of the (various possible) correlations among the judges’ rankings, and (3) How do we
determine whether the judges are able to identify the wines or the types of wines significantly better than
would occur by chance alone. We are able to find appropriate techniques for each of these questions, and
their application is likely to yield considerable insights into what happens in a blind tasting of wines.
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Appendix

Table 6. Critical values for Sd at the 0.05 level.

n =
m 4 5 6 7 8 9 10 11 12

4 50 88 140 216 312 430 570 746 954

5 60 110 180 278 390 550 716 946 1204

6 74 134 218 336 480 664 876 1150 1468

7 88 158 256 394 564 780 1036 1344 1712

8 102 182 300 452 644 894 1174 1534 1984

9 112 206 338 512 732 1014 1342 1742 2236

10 122 230 376 580 820 1128 1500 1954 2508

11 136 252 420 636 902 1236 1642 2140 2740

12 150 276 458 688 992 1360 1836 2358 2998

Table 12. Sampling Distribution of Trace

trace=

n 0 1 2 3 4 5 6 7 8

2 0.500 0.000 0.500

3 0.333 0.500 0.000 0.167

4 0.375 0.333 0.250 0.000 0.042

5 0.367 0.375 0.167 0.083 0.000 0.008

6 0.368 0.367 0.188 0.056 0.021 0.000 0.001

7 0.368 0.368 0.183 0.062 0.014 0.004 0.000 0.000

8 0.368 0.368 0.184 0.061 0.016 0.003 0.000 0.000 0.000

9 0.368 0.368 0.184 0.061 0.015 0.003 0.000 0.000 0.000

10 0.368 0.368 0.184 0.061 0.015 0.003 0.000 0.000 0.000

11 0.368 0.368 0.184 0.061 0.015 0.003 0.000 0.000 0.000

12 0.368 0.368 0.184 0.061 0.015 0.003 0.000 0.000 0.000
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Table 13. 10 Percent Significance Levels for V

m =

n 4 5 6 7 8 9 10 11 12 13 14 15

4 1.12 1.44 1.75 2.06 2.38 2.69 3.00 3.31 3.62 3.94 4.25 4.56

5 1.88 1.12 1.36 1.60 1.84 2.08 2.32 2.56 2.80 3.04 3.28 3.52

6 0.72 0.92 1.11 1.31 1.50 1.69 1.89 2.08 2.28 2.44 2.67 2.81

7 0.61 0.78 0.94 1.10 1.26 1.43 1.59 1.76 1.92 2.08 2.24 2.41

8 0.53 0.67 0.81 0.95 1.09 1.23 1.38 1.52 1.62 1.80 1.91 2.08

9 0.46 0.59 0.72 0.84 0.96 1.09 1.21 1.33 1.46 1.58 1.68 1.80

10 0.42 0.53 0.64 0.75 0.86 0.97 1.08 1.17 1.30 1.41 1.52 1.63

11 0.38 0.48 0.58 0.68 0.78 0.88 0.98 1.07 1.17 1.26 1.37 1.46

12 0.34 0.44 0.53 0.62 0.71 0.80 0.89 0.98 1.07 1.15 1.25 1.34

Table 14. 5 Percent Significance Levels for V

m =

n 4 5 6 7 8 9 10 11 12 13 14 15

4 1.25 1.69 2.00 2.31 2.75 3.06 3.38 3.81 4.12 4.56 4.75 5.19

5 0.96 1.28 1.52 1.76 2.08 2.32 2.56 2.80 3.12 3.36 3.68 3.92

6 0.78 1.03 1.22 1.41 1.67 1.81 2.06 2.26 2.50 2.64 2.89 3.08

7 0.65 0.82 1.02 1.18 1.39 1.55 1.71 1.88 2.04 2.24 2.41 2.57

8 0.56 0.67 0.81 1.02 1.16 1.33 1.47 1.61 1.75 1.92 2.06 2.20

9 0.49 0.64 0.76 0.89 1.02 1.16 1.28 1.40 1.53 1.68 1.80 1.93

10 0.44 0.57 0.68 0.79 0.90 1.01 1.14 1.25 1.36 1.49 1.60 1.71

11 0.40 0.51 0.61 0.71 0.81 0.93 1.02 1.12 1.22 1.32 1.44 1.54

12 0.35 0.47 0.56 0.64 0.74 0.83 0.93 1.02 1.11 1.20 1.31 1.40
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Table 15. Probabilities for the Number of Correctly Identified Wines

n1 = 4 n1 = 4 n1 = 4 n1 = 5 n1 = 5 n1 = 6
n2 = 4 n2 = 5 n2 = 6 n2 = 5 n2 = 6 n2 = 6

Number Probability
0 0.014 0. 0. 0.004 0. 0.001
1 0. 0.040 0. 0. 0.013 0.
2 0.229 0. 0.071 0.099 0. 0.039
3 0. 0.317 0. 0. 0.162 0.
4 0.514 0. 0.381 0.397 0. 0.244
5 0. 0.476 0. 0. 0.433 0.
6 0.229 0. 0.429 0.397 0. 0.433
7 0. 0.159 0. 0. 0.325 0.
8 0.014 0. 0.114 0.099 0. 0.244
9 0. 0.008 0. 0. 0.065 0.

10 0. 0. 0.005 0.004 0. 0.039
11 0. 0. 0. 0. 0.002 0.
12 0. 0. 0. 0. 0. 0.001

Table 16. Probabilities for the Number of Correctly Identified Wines

n1 = 2 n1 = 3 n1 = 3 n1 = 3 n1 = 4 n1 = 3
n2 = 3 n2 = 3 n2 = 3 n2 = 3 n2 = 4 n2 = 4
n3 = 3 n3 = 3 n3 = 4 n3 = 5 n3 = 4 n3 = 5

Number Probability
0 0.043 0.033 0.019 0.006 0.010 0.006
1 0.150 0.129 0.088 0.049 0.053 0.040
2 0.259 0.225 0.190 0.139 0.131 0.115
3 0.257 0.259 0.246 0.224 0.206 0.198
4 0.188 0.193 0.225 0.237 0.229 0.233
5 0.064 0.112 0.137 0.187 0.183 0.195
6 0.038 0.032 0.071 0.097 0.114 0.126
7 0. 0.016 0.017 0.046 0.050 0.056
8 0.002 0. 0.008 0.010 0.020 0.023
9 0. 0.001 0. 0.004 0.004 0.004

10 0. 0. 0.000 0. 0.001 0.002
11 0. 0. 0. 0.000 0. 0.
12 0. 0. 0. 0. 0.000 0.000
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Table 17. Critical Values18

Case Critical Values Case Critical Values

0.05 level 0.10 level 0.05 level 0.10 level
6:3,3 6 6 10;2,4,4 7 7
6;4,2 - 2 10;2,2,6 8 7

6:2,2,2 6 6 10;2,2,2,2,2 5 5
7:3,4 7 7 11;5,6 11 9
7;5,2 7 7 11;4,7 11 9

7:2,3,3 7 5 11;3,8 11 11
7;1,2,4 7 7 11;3,4,4 8 7
8:4,4 8 8 11;3,3,5 8 7
8:3,5 8 8 11;2,3,6 8 7
8;2,6 8 8 11;2,2,7 8 8

8;2,3,3 6 6 11;2,3,3,3 6 6
8;2,2,4 6 6 11;2,2,3,4 7 6

8;2,2,2,2 6 5 12;6,6 10 10
9;4,5 9 9 12;5,7 10 10
9;3,6 9 9 12;4,4,4 8 7

9;3,3,3 6 6 12;3,4,5 8 7
9;2,3,4 7 6 12;3,3,6 8 8
9;2,2,5 7 6 12;2,3,7 9 8
10;5,5 10 10 12;2,4,6 8 7
10;4,6 10 10 12;3,3,3,3 7 6
10;3,7 10 10 12;2,3,3,4 7 6

10;3,3,4 7 6 12;2,2,2,2,2,2 5 4
10;2,3,5 7 7

18 Note that there is no entry for the second element in the second column because there exists no number of correct identifi-
cations that has a probability les than or equal to 0.05. In fact, the probability of 6 correct identifications is 0.0667.


