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Corollary 3. If r − Rβ̂ = 0, then E(β̃) = β and λ̃ = 0.

Proof . Substituting Xβ + u for Y and (X ′X)−1X ′Y for β̂ in the expression for β̃ in Eq.(34a)

and taking expectations yields the result for E(β̃). Using this by replacing β̃ by β in the formula

for λ̃ yields the result for E(β̃).

Define

A = I − (X ′X)−1R′[R(X ′X)−1R′]−1
R. (35)

We then have

Theorem 25. The covariance matrix of β̃ is σ2A(X ′X)−1.

Proof . Substituting (X ′X)−1X ′Y for β̂ and Xβ + u for Y in β̃ (Eq.(34a)), we can write

β̃ − E(β̃) = (X ′X)−1
[
X ′ − R′[R(X ′X)−1R′]−1

R(X ′X)−1X ′]u
=
[
I − (X ′X)−1R′[R(X ′X)−1R′]−1

R
]
(X ′X)−1X ′u = A(X ′X)−1X ′u.

(36)

Multiplying Eq.(36) by its transpose and taking expectations, yields

Cov(β̃) = σ2A(X ′X)−1A′

= σ2
[
I − (X ′X)−1R′[R(X ′X)−1R′]−1

R
]
(X ′X)−1

[
I − R′[R(X ′X)−1R′]−1

R(X ′X)−1
]

= σ2
[
(X ′X)−1 − (X ′X)−1R′[R(X ′X)−1R′]−1

R(X ′X)−1

− (X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1

+ (X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1R′[R(X ′X)−1R′]−1

R(X ′X)−1
]

= σ2
[
(X ′X)−1 − (X ′X)−1R′[R(X ′X)−1R′]−1

R(X ′X)−1
]

= σ2A(X ′X)−1.

We now consider the test of the null hypothesis H0 : Rβ = r. For this purpose we construct an

F -statistic as in Theorem 20 (see also Eq.(12)).
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The minimum sum of squares subject to the restriction can be written as

Sr =
{
Y − X

[
β̂ + (X ′X)−1R′[R(X ′X)−1R′]−1(r − Rβ̂)

]}′

×
{
Y − X

[
β̂ + (X ′X)−1R′[R(X ′X)−1R′]−1(r − Rβ̂)

]}

= (Y − Xβ̂)′(Y − Xβ̂) −
[
X(X ′X)−1R′[R(X ′X)−1R′]−1(r − Rβ̂)

]′(Y − Xβ̂)

− (Y − Xβ̂)′
[
X(X ′X)−1R′[R(X ′X)−1R′]−1(r − Rβ̂)

]

+ (r − Rβ̂)′
[
R(X ′X)−1R′]−1(X ′X)−1(X ′X)(X ′X)−1R′[R(X ′X)−1R′]−1(r − Rβ̂)

= Su + (r − Rβ̂)′
[
R(X ′X)−1R′]−1(r − Rβ̂),

(37)

where Su denotes the unrestricted minimal sum of squares, and where the disappearance of the

second and third terms in the third and fourth lines of the equation is due to the fact that that

X ′(Y − Xβ̂) = 0 by the definition of β̂. Substituting the least squares estimate for β̂ in (37), we

obtain

Sr − Su = [r − R(X ′X)−1X ′Y ]′
[
R(X ′X)−1R′]−1[r − R(X ′X)−1X ′Y ]

= [r − Rβ − R(X ′X)−1X ′u]′
[
R(X ′X)−1R′]−1[r − Rβ − R(X ′X)−1X ′u]

= u′X(X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1X ′u = u′B1u,

(38)

since under H0, r − Rβ = 0. The matrix B1 is idempotent and of rank p because

X(X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1(X ′X)(X ′X)−1R′[R(X ′X)−1R′]−1

R(X ′X)−1X ′

= X(X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1X ′

and
tr(B1) = tr(X(X ′X)−1R′[R(X ′X)−1R′]−1

R(X ′X)−1X ′)

= tr(R′[R(X ′X)−1R′]−1
R(X ′X)−1(X ′X)(X ′X)−1)

= tr(
[
R(X ′X)−1R′]−1

R(X ′X)−1R′) = tr(Ip) = p.

The matrix of the quadratic form Su is clearly B2 = I − X(X ′X)−1X ′ which is idempotent and or

rank n − k. Moreover, B1B2 = 0, since

X(X ′X)−1R′[R(X ′X)−1R′]−1
R(X ′X)−1X ′(I − X(X ′X)−1X ′) = 0.

Hence
(Sr − Su)/p

Su/(n − k)

is distributed as F (p, n − k).

We now turn to the case in which the covariance matrix of u is Ω and we wish to test the

hypothesis H0 : Rβ = r. We first assume that Ω is known. We first have
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Theorem 26. If u is distributed as N(0, Ω), and if Ω is known, then the Lagrange Multiplier,

Wald, and likelihood ratio test statistics are identical.

Proof . The loglikelihood function is

log L(β) = (2π)−n/2 +
1
2

log |Ω−1| − 1
2
(Y − Xβ)′Ω−1(Y − Xβ),

where |Ω−1| denotes the determinant of Ω−1, and the score vector is

∂ log L

∂β
= X ′Ω−1(Y − Xβ).

By further differentiation, the Fischer Information matrix is

I(β) = X ′Ω−1X.

The unrestricted maximum likelihood estimator for β is obtained by setting the score vector equal

to zero and solving, which yields

β̂ = (X ′Ω−1X)−1X ′Ω−1Y.

Letting û denote the residuals Y − Xβ̂, the loglikelihood can be written as

log L = −n

2
log(2π) +

1
2

log |Ω−1| − 1
2
û′Ω−1û.

To obtain the estimates restricted by the linear relations Rβ = r, we form the Lagrangian

L(β, λ) = log L(β) + λ′(Rβ − r)

and set its partial derivatives equal to zero, which yields

∂ log L

∂β
= X ′Ω−1(Y − Xβ) + R′λ = 0

∂ log L

∂λ
= Rβ − r = 0.

(39)

Multiply the first equation in (39) by (X ′Ω−1X)−1, which yields

β̃ = β̂ + (X ′Ω−1X)−1R′λ̃.

Multiplying this further by R, and noting that Rβ̃ = r, we obtain

λ̃ = −
[
R(X ′Ω−1X)−1R′]−1

(Rβ̂ − r) (40)

β̃ = β̂ − (X ′Ω−1X)−1R′[R(X ′Ω−1X)−1R′]−1(Rβ̂ − r). (41)
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The loglikelihood, evaluated at β̃ is

log L(β̃) = −n

2
log(2π) +

1
2

log |Ω−1| − 1
2
ũ′Ω−1ũ.

We now construct the test statistics. The Lagrange multiplier statistic is

LM =
[
∂ log L

∂β̃

]′
I(β̃)−1

[
∂ log L

∂β̃

]
= ũ′Ω−1X(X ′Ω−1X)−1X ′Ω−1ũ

= λ̃′R(X ′Ω−1X)−1R′λ̃.

(42)

The Wald statistic is

W = (Rβ̃ − r)′
[
R(X ′Ω−1X)−1R′]−1(Rβ̃ − r), (43)

and since the covariance matrix of (Rβ̃ − r) is R(X ′Ω−1X)−1R′, W can be written as

W = (Rβ̃ − r)′
[
R(X ′Ω−1X)−1R′]−1[

R(X ′Ω−1X)−1R′][R(X ′Ω−1X)−1R′]−1(Rβ̃ − r)

= λ̃′[R(X ′Ω−1X)−1R′]λ̃ = LM,

where we have used the definition of λ̃ in (40). The likelihood ratio test statistic is

LR = −2
[
log L(β̃) − log L(β̂)

]
= ũ′Ω−1ũ − û′Ω−1û. (44)

Since Ω−1/2ũ = Ω−1/2(Y −Xβ̃), and substituting in this for β̃ from its definition in (41), we obtain

Ω−1/2ũ = Ω−1/2
[
Y − Xβ̂ − X(X ′Ω−1X)−1R′λ̃

]
. (45)

We multiply Eq.(45) by its transpose and note that terms with (Y − Xβ̂)Ω−1X vanish; hence we

obtain

ũ′Ω−1ũ = û′Ω−1û + λ̃′R(X ′Ω−1X)−1R′λ̃.

But the last term is the Lagrange multiplier test statistic from (42); hence comparing this with (44)

yields LR = LM .

We now consider the case when Ω is unknown, but is a smooth function of a p-element vector α,

and denoted by Ω(α). We then have

Theorem 27. If u is normally distributed as N(0, Ω(α)), then W >
= LR >

= LM .

Proof . Denote by θ′ the vector (β′,α′). The loglikelihood is

log L(θ) = −
n

2
log(2π) +

1
2

log |Ω−1(α)| +
1
2
(Y − Xβ)′Ω−1(α)(Y − Xβ).
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Denoting the unrestricted estimates by θ̂ and the restricted estimates by θ̃, as before, and in par-

ticular, denoting by Ω̂ the matrix Ω(α̂) and by Ω̃ the matrix Ω(α̃), the three test statistics can be

written, in analogy with Eqs.(42) to (44), as

LM = ũ′Ω̃−1X(X ′Ω̃−1X)−1X ′Ω̃−1û

W = (Rβ̂ − r)′
[
R(X ′Ω̂−1X)−1R′]−1(Rβ̂ − r)

LR = −2
(
log L(α̃, β̃) − log L(α̂, β̂)

)
.

Now define

LR(α̃) = −2
(
log L(α̃, β̃) − log L(α̃, β̃u)

)
, (46)

where β̃u is the unrestricted maximizer of log L(α̃, β) and

LR(α̂) = −2
(
log L(α̂, β̂r) − log L(α̂, β̂)

)
, (47)

where β̂r is the maximizer of log L(α̂, β) subject to the restriction Rβ − r = 0. LR(α̃) employs the

same Ω matrix as the LM statistic; hence by the argument in Theorem 26,

LR(α̃) = LM.

It follows that

LR − LM = LR − LR(α̃) = 2
(
log L(α̂, β̂) − log L(α̃, β̃u)

]
>= 0,

since the α̂ and β̂ estimates are unrestricted. We also note that W and LR(α̂) use the same Ω,

hence they are equal by Theorem 26. Then

W − LR = LR(α̂) − LR = 2
(
log L(α̃, β̃) − log L(α̂, β̂r)

)
>= 0, (48)

since β̂r is a restricted estimate and the highest value of the likelihood with the restriction that can

be achieved is log L(α̃, β̃). Hence W >= LR >= LM .

We now prove a matrix theorem that will be needed subsequently.

Theorem 28. If Σ is symmetric and positive definite of order p, and if H is of order p × q,

with q <
= p, and if the rank of H is q, then

[
Σ H
H ′ 0

]

is nonsingular.

Proof . First find a matrix, conformable with the first,
[

P Q
Q′ R

]
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such that [
Σ H
H ′ 0

] [
P Q
Q′ R

]
=
[

I 0
0 I

]
.

Performing the multiplication and equating the two sides, we obtain

ΣP + HQ′ = I (49)

ΣQ + HR = 0 (50)

H ′P = 0 (51)

H ′Q = I (52)

From (49) we have

P + Σ−1HQ′ = Σ−1. (53)

Multiplying Eq.(53) on the left by H ′, and noting from Eq.(51) that H ′P = 0, we have

H ′Σ−1HQ′ = H ′Σ−1. (54)

Since H is of full rank, H ′Σ−1H is nonsingular by a straightforward extension of Lemma 1. Then

Q′ = (H ′Σ−1H)−1H ′Σ−1, (55)

which gives us the value of Q. Substituting (55) in Eq.(53) gives

P = Σ−1 − Σ−1H(H ′Σ−1H)−1H ′Σ−1. (56)

From Eq.(50) we have

Σ−1HR = −Q,

and multiplying this by H ′ and using Eq.(52) yields

H ′Σ−1HR = −I

and

R = −(H ′Σ−1H)−1, (57)

which determines the value of R. Since the matrix
[

P Q
Q′ R

]

is obviously the inverse of the matrix in the theorem, the proof is complete.
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We now consider the regression mode Y = Xβ + u, where u is distributed as N(0, σ2I), subject

to the restrictions Rβ = 0; hence this is the same model as considered before with r = 0. Minimize

the sum of squares subject to the restrictions by forming the Lagrangian

L = (Y − Xβ)′(Y − Xβ) + λ′Rβ. (58)

The first order conditions can be written as
[

(X ′X)−1 R′

R 0

] [
β
λ

]
=
[

X ′Y
0

]
. (59)

Denote the matrix on the left hand side of (59) by A, and write its inverse as

A−1 =
[

P Q
Q′ S

]
. (60)

We can then write the estimates as [
β̃
λ̃

]
=
[

PX ′Y
Q′X ′Y

]
, (61)

and taking expectations, we have

E

[
β̃
λ̃

]
=
[

PX ′Xβ
Q′X ′Xβ

]
. (62)

From multiplying out A−1A we obtain

PX ′X + QR = I (63)

Q′X ′X + SR = 0 (64)

PR′ = 0 (65)

Q′R′ = I (66)

Hence we can rewrite Eq.(62) as

E

[
β̃
λ̃

]
=
[

(I − QR)β
−SRβ

]
=
[

β
0

]
, (67)

since Rβ = 0 by definition. This, so far, reproduces Corollary 3.

Theorem 29. Given the definition in Eq.(61), the covariance matrix of (β̃, λ̃) is

σ2

[
P 0
0 −S

]
.

Proof . It is straightforward to note that

cov(β̃, λ̃) = E

[(
β̃
λ̃

)
−
(

β
0

)][(
β̃
λ̃

)
−
(

β
0

)]′
= σ2

[
PX ′XP PX ′XQ
QX ′XP Q′X ′XQ

]
. (68)
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From (65) and (66), multiplying the second row of A into the first column of A−1 gives

RP = 0,

and multiplying it into the second column gives

RQ = I.

Hence, multiplying Eq.(63) on the right by P gives

PX ′XP + QRP = P

or, since RP = 0,

PX ′XP = P.

Multiplying Eq.(63) by Q on the right gives

PX ′XQ + QRQ = Q,

or, since RQ = I ,

PX ′XQ = 0.

Finally, multiplying (64) by Q on the right gives

Q′X ′XQ + SRQ = 0,

which implies that

Q′X ′XQ = −S.

We now do large-sample estimation for the general unconstrained and constrained cases. We

wish to estimate the parameters θ of the density function f(x, θ), where x is a random variable and

θ is a parameter vector with k elements. In what follows, we denote the true value of θ by θ0. The

loglikelihood is

log L(x, θ) =
n∑

i=1

log f(xi, θ). (69)

Let θ̂ be the maximum likelihood estimate and let Dθ be the differential operator. Also define I1(θ)

as var(Dθ log f(x, θ)). It is immediately obvious that var(Dθ log L(x, θ)) = nI1(θ). Expanding in

Taylor Series about θ0, we have

0 = Dθ log L(x, θ̂) = Dθ log L(x, θ0) + (θ̂ − θ0)D2
θ log L(x, θ0) + R(x, θ0, θ̂) (70)
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Theorem 30. If θ̂ is a consistent estimator and the third derivative of the loglikelihood function

is bounded, then
√

n(θ̂ − θ0) is distributed as N(0, I1(θ0)−1).

Proof . From Eq.(70) we have

√
n(θ̂ − θ0) = −n−1/2Dθ log L(x, θ0) + n−1/2R(x, θ0, θ̂)

n−1D2
θ log L(x, θ0)

(71)

where R is a remainder term of the form (θ̂ − θ0)3D3
θ(log L(x, θ)/2, θ being between θ̂ and θ0. The

quantity n−1/2Dθ log L(x, θ0) is a sum of n terms, each of which has expectation 0 and variance

I1(θ0); hence by the Central Limit Theorem, n−1/2Dθ log L(x, θ0) is asymptotically normally dis-

tributed with mean zero and variance equal to (1/n)nI1(θ0) = I1(θ0). The remainder term converges

in probability to zero. The denominator is 1/n times the sum of n terms, each of which has expec-

tation equal to −I1(θ0); hence the entire denominator has the same expectation and by the Weak

Law of Large Numbers the denominator converges to this expectation. Hence
√

n(θ̂ − θ0) converges

in distribution to a random variable which is I1(θ0)−1 times an N(0, I1(θ0)) variable and hence is

asymptotically distributed as N(0, I1(θ0)−1).

We now consider the case when there are p restrictions given by h(θ)′ = (h1(θ), . . . , hp(θ)) = 0.

Estimation subject to the restrictions requires forming the Lagrangian

G = log L(x, θ) − λ′h(θ)

and setting its first partial derivatives equal to zero:

Dθ log L(x, θ̃) − Hθλ̃ = 0

h(θ̃) = 0
(72)

where Hθ is the k×p matrix of the derivatives of h(θ) with respect to θ. Expanding in Taylor Series

and neglecting the remainder term, yields asymptotically

Dθ log L(x, θ0) + D2
θ log L(x, θ0)(θ̃ − θ0) − Hθλ̃ = 0

H ′
θ(θ̃ − θ0) = 0

(73)

The matrix Hθ should be evaluated at θ̃; however, writing Hθ(θ̃)λ̃ = Hθ(θ0)λ̃ + H ′
θ(θ0)(θ̃ − θ0) and

noting that if the restrictions hold, θ̃ will be near θ0 and λ̃ will be small, we may take Hθ to be

evaluated at θ0.

Theorem 31. The vector

[√
n(θ̃ − θ0)

1√
n
λ̃

]
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is asymptotically normally distributed with mean zero and covariance matrix

[
P 0
0 S

]

where [
I1(θ0) Hθ

H ′
θ 0

]−1

=

[
P Q

Q′ S

]
.

Proof . Dividing the first line of (73) by
√

n and multiplying the second line by
√

n, we can write

[
− 1

nD2
θ log L(x, θ0) Hθ

H ′
θ 0

][√
n(θ̃ − θ0)

1
n λ̃

]
=

[
1√
n
Dθ log L(x, θ0)

0

]
. (74)

The upper left-hand element in the left-hand matrix converges in probability to I1(θ0) and the top

element on the right hand side converges in distribution to N(0, I1(θ0)). Thus, (74) can be written

as [
I1(θ0) Hθ

H ′
θ 0

][√
n(θ̃ − θ0)

1
n λ̃

]
=

[
1√
n
Dθ log L(x, θ0)

0

]
. (75)

Eq.(75) is formally the same as Eq.(59); hence by Theorem 29,

[√
n(θ̃ − θ0)

1√
n
λ̃

]

is asymptotically normally distributed with mean zero and covariance matrix

[
P 0
0 S

]

where [
I1(θ0) Hθ

H ′
θ 0

]−1

=

[
P Q

Q′ S

]
. (76)

We now turn to the derivation of the asymptotic distribution of the likelihood ratio test statistic.

As before, θ̂ denotes the unrestricted, and θ̃ the restricted estimator.

Theorem 32. Under the assumptions that guarantee that both the restricted and unrestricted

estimators (θ̃ and θ̂ respectively) are asymptotically normally distributed with mean zero and co-

variance matrices I1(θ0) and P respectively, and if the null hypothesis H0 : h(θ) = 0 is true, the
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likelihood ratio test statistic, 2 logµ = 2(log L(x, θ̂) − log L(x, θ̃)) is asymptotically distributed as

χ2(p).

Proof . Expand log L(x, θ̃) in Taylor Series about θ̂, which yields to an approximation

log L(x, θ̃) = log L(x, θ̂) + Dθ log L(x, θ̂)(θ̂ − θ̃) +
1
2
(θ̂ − θ̃)′

[
D2

θ(log L(x, θ̂)
]
(θ̂ − θ̃). (77)

Since the second term on the right hand side is zero by definition, the likelihood ratio test statistic

becomes

2 logµ = (θ̂ − θ̃)′
[
−D2

θ log L(x, θ̂)
]
(θ̂ − θ̃). (78)

Let v be a k-vector distributed as N(0, I1(θ0)). Then we can write

√
n(θ̂ − θ0) = I1(θ0)−1v

√
n(θ̃ − θ0) = Pv

(79)

where P is the same P as in Eq.(76). Then, to an approximation,

2 logµ = v′(I1(θ0)−1 − P )′I1(θ0)(I1(θ0)−1 − P )v

= v′(I1(θ0)−1 − P − P + PI1(θ0)P )v
. (80)

We next show that P = PI1(θ0)P . From Eq.(56) we can write

P = I1(θ0)−1 − I1(θ0)−1H(H ′I1(θ0)−1H)−1H ′I1(θ0)−1. (80)

Multiplying this on the left by I1(θ0) yields

I1(θ0)P = I − H(H ′I1(θ0)−1H)−1H ′I1(θ0)−1,

and multiplying this on the left by P (using the right-hand side of (81)), yields

PI1(θ0)P = I1(θ0)−1 − I1(θ0)−1H [H ′I1(θ0)−1H ]−1H ′I1(θ0)−1

− I1(θ0)−1H [H ′I1(θ0)−1H ]−1H ′I1(θ0)−1

+ I1(θ0)−1H [H ′I1(θ0)−1H ]−1H ′I1(θ0)−1H [H ′I1(θ0)−1H ]−1H ′I1(θ0)−1

= P

(82)

Hence,

2 logµ = v′(I1(θ0)−1 − P )v. (83)

Since I1(θ0) is symmetric and nonsingular, it can always be written as I1(θ0) = AA′, where A is a

nonsingular matrix. Then, if z is a k-vector distributed as N(0, I), we can write

v = Az
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and E(v) = 0 and cov(v) = AA′ = I1(θ0) as required. Then

2 logµ = z′A′(I1(θ0)−1 − P )Az

= z′A′I1(θ0)−1Az − z′A′PAz

= z′A′(A′)−1A−1Az − z′A′PAz

= z′z − z′A′PAz

= z′(I − A′PA)z

. (84)

Now (A′PA)2 = A′PAA′PA = A′PI1(θ0)PA, but from Eq.(82), P = PI1(θ0)P ; hence A′PA is

idempotent, and its rank is clearly the rank of P . But since the k restricted estimates must satisfy

p independent restrictions, the rank of P is k − p. Hence the rank of I −A′PA is k − (k − p) = p.

We next turn to the Wald Statistic. Expanding h(θ̂) in Taylor Series about θ0 gives asymptotically

h(θ̂) = h(θ0) + H ′
θ(θ̂ − θ0)

and under the null hypothesis

h(θ̂) = H ′
θ(θ̂ − θ0). (85)

Since
√

n(θ̂ − θ0) is asymptotically distributed as N(0, I1(θ0)−1),
√

nh(θ̂), which is asymptotically

the same as H ′
θ

√
n(θ̂ − θ0), is asymptotically distributed as N(0, H ′

θI1(θ0)−1Hθ). Then the Wald

Statistic, h(θ̂)′[cov(h(θ̂))]−1h(θ̂) becomes

W = nh(θ̂)′[H ′
θI1(θ0)−1Hθ]−1h(θ̂). (86)

Theorem 33. Under H0 : h(θ) = 0, and if Hθ is of full rank r, W is asymptotically distributed

as χ2(p).

Proof . Let z be distributed as N(0, I) and let I1(θ0)−1 = AA′, where A is nonsingular. Then

AZ is distributed as N(0, I1(θ0)−1), which is the asymptotic distribution of
√

n(θ̂−θ0). Thus, when

h(θ) = 0,
√

nh(θ̂) = H ′
θ

√
n(θ̂ − θ0)

is asymptotically distributed as H ′
θAz. The Wald Statistic can be written as

W = z′A′Hθ[H ′
θI1(θ0)−1Hθ]−1H ′

θAz, (87)

which we obtain by substituting in Eq.(86) the asymptotic equivalent of
√

nh(θ̂). But the matrix in

Eq.(87) is idempotent of rank p, since

A′Hθ[H ′
θI1(θ0)−1Hθ]−1H ′

θAA′Hθ[H ′
θI1(θ0)−1Hθ]−1H ′

θA =

A′Hθ[H ′
θI1(θ0)−1Hθ]−1H ′

θA
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where we have substituted I1(θ0)−1 for AA′, I1(θ0)−1 is of rank k, Hθ is of full rank p, and A is

nonsingular.

We next turn to the Lagrange Multiplier test. If the null hypothesis that h(θ) = 0 is true,

then the gradient of the loglikelihood function is likely to be small, where the appropriate metric is

the inverse covariance matrix for Dθ log L(x, θ). Hence the Lagrange Multiplier statistic is written

generally as

LM = [Dθ log L(x, θ̃)]′
[
cov(Dθ log L(x, θ̃))

]−1[Dθ log L(x, θ̃)]. (88)

Theorem 34. Under the null hypothesis, LM is distributed as χ2(p).

Proof . Expanding Dθ log L(x, θ̃) in Taylor Series, we have asymptotically

Dθ log L(x, θ̃) = Dθ log L(x, θ̂) + D2
θ log L(x, θ̂)(θ̃ − θ̂). (89)

D2
θ log L(x, θ̂) converges in probability to −nI1(θ0), Dθ log L(x, θ̂) converges in probability to zero,

and Dθ log L(x, θ̃) converges in probability to −nI1(θ0)(θ̃ − θ̂). But asymptotically θ̂ = θ̃ under the

null; hence n−1/2Dθ log L(x, θ̃) is asymptotically distributed as N(0, I1(θ0)). Hence the appropriate

test is

LM = n−1[Dθ log L(x, θ̃)]I1(θ0)−1[Dθ log L(x, θ̃)]

which by (88) is asymptotically

LM = n−1
[
n(θ̃ − θ̂)′I1(θ0)I1(θ0)−1I1(θ0)(θ̃ − θ̂)n

]
= n(θ̃ − θ̂)′I1(θ0)(θ̃ − θ̂). (90)

But this is the same as Eq.(78), the likelihood ratio statistic, since the term −D2
θ log L(x, θ̃) in

Eq.(78) is nI1(θ0). Since the likelihood ratio statistic has asymptotic χ2(p) distribution, so does the

LM statistic.

We now illustrate the relationship among W , LM , and LR and provide arguments for their

asymptotic distributions in a slightly different way than before with a regression model Y = Xβ+u,

with u distributed as N(0, σ2I), and the restrictions Rβ = r.

In that case the three basic statistics are

W = (Rβ̂ − r)′
[
R(X ′X)−1R′]−1(Rβ̂ − r)/σ̂2

LM = (Rβ̂ − r)′
[
R(X ′X)−1R′]−1(Rβ̂ − r)/σ̃2

LR = −n

2
(log σ̂2 − log σ̃2)

(91)

where W is immediate from Eq.(45) when Ω̂ is set equal to σ̂2I , LM follows by substituting (40)

in to (42) and setting Ω̃ = σ̃2, and LR = −2 logµ follows by substituting β̂, respectively β̃ in the
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likelihood function and computing −2 logµ. The likelihood ratio µ itself can be written as

µ =
(

û′û/n

ũ′ũ/n

)n/2

=

[
1

1 + 1
nσ̂2 (Rβ̂ − r)′(Rβ̂ − r)

]n/2 (92)

where we have utilized Eq.(37) by dividing both sides by Su and taking the reciprocal. We can also

rewrite the F -statistic
(Sr − Su)/p

Su/(n − k)
as

F =
(Rβ̂ − r)′

[
R(X ′X)−1R′]−1(Rβ̂ − r)/p

Su/(n − k)
. (93)

Comparing (92) and (93) yields immediately

µ =

(
1

1 + p
n−k F

)n/2

(94)

and comparing W in (91) with (92) yields

µ =
(

1
1 + W/n

)n/2

. (95)

Equating (94) and (95) yields
W

n
=

p

n − k
F

or

W = p

(
1 +

k

n − k

)
F. (96)

Although the left-hand side is asymptotically distributed as χ2(p) and F has the distribution of

F (p, n−k), the right hand side also has asymptotic distribution χ2(p), since the quantity pF (p, n−k)

converges in distribution to that χ2 distribution.

Comparing the definitions of LM and W in (91) yields

LM =
(

σ̂2

σ̃2
W

)
(97)

and from Eq.(37) we have

σ̃2 = σ̂2(1 + W/n). (98)

Hence, from (97) and (98) we deduce

LM =
W

1 + W/n
, (99)
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and using (96) we obtain

LM =
p
(

n
n−k

)
F

1 + p
n

n
n−kF

=
npF

n − k + pF
, (100)

which converges in distribution as n → ∞ to χ2(p). From (95) we obtain

−2 logµ = LR = n log
(

1 +
W

n

)
. (101)

Since for positive z, ez > 1 + z, it follows that

LR

n
= log

(
1 +

W

n

)
<

W

n

and hence W > LR.

We next note that for z >= 0, log(1 + z) >= z/(1 + z), since (a) at the origin the left and right

hand sides are equal, and (b) at all other values of z the derivative of the left-hand side, 1/(1 + z)

is greater than the slope of the right-hand side, 1/(1 + z)2. It follows that

log
(

1 +
W

n

)
>=

W/n

1 + W/n
.

Using (99) and (101), this shows that LR >= LM .

Recursive Residuals.

Since least squares residuals are correlated, even when the true errors u are not, it is inappropriate

to use the least squares residuals for tests of the hypothesis that the true errors are uncorrelated. It

may therefore be useful to be able to construct residuals that are uncorrelated when the true errors

are. In order to develop the theory of uncorrelated residuals, we first prove a matrix theorem.

Theorem 35 (Barlett’s). If A is a nonsingular n× n matrix, if u and v are n-vectors, and if

B = A + uv′, then

B−1 = A−1 − A−1uv′A−1

1 + v′A−1u
.

Proof . To show this, we verify that pre- or postmultiplying the above by b yields an identity

matrix. Thus, postmultiplying yields

B−1B = I =
(

A−1 − A−1uv′A−1

1 + v′A−1u

)
(A + uv′)

= I − A−1uv′

1 + v′A−1u
+ A−1uv′ − A−1uv′A−1uv′

1 + v′A−1u

= I +
−A−1uv′ + A−1uv′ + A−1uv′(v′A−1u) − A−1u(v′A−1u)v′

1 + v′A−1u

= I

(102)
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We consider the standard regression model Y = Xβ + u, where u is distributed as N(0, σ2I)

and where X is n × k of rank k. Define Xj to represent the first j rows of the X-matrix, Yj the

first j rows of the Y -vector, x′
j the jth row of X , and yj the jth element of Y . It follows from the

definitions, for example, that

Xj =
[

Xj−1

x′
j

]
and Yj =

[
Yj−1

yj

]
.

Define the regression coefficient estimate based on the first j observations as

β̂j = (X ′
jXj)−1X ′

jYj . (103)

We then have the following

Theorem 36.

β̂j = β̂j−1 +
(X ′

j−1Xj−1)−1xj(yj − x′
j β̂j−1)

1 + x′
j(X

′
j−1Xj−1)−1xj

.

Proof . By Theorem 35,

(X ′
jXj)−1 = (X ′

j−1Xj−1)−1 −
(X ′

j−1Xj−1)−1xjx
′
j(X

′
j−1Xj−1)−1

1 + x′
j(X

′
j−1Xj−1)−1xj

.

We also have by definition that

XjYj = Xj−1Yj−1 + xjyj .

Substituting this in Eq.(103) gives

β̂j =

[
(X ′

j−1Xj−1)−1 −
(X ′

j−1Xj−1)−1xjx
′
j(X

′
j−1Xj−1)−1

1 + x′
j(X

′
j−1Xj−1)−1xj

]
(Xj−1Yj−1 + xjyj)

= β̂j−1 + (X ′
j−1Xj−1)−1xjyj

−
(X ′

j−1Xj−1)−1xjx
′
j [(X

′
j−1Xj−1)−1X ′

j−1Yj−1] + (X ′
j−1Xj−1)−1xjx

′
j(X

′
j−1Xj−1)−1xjyj

1 + x′
j(X

′
j−1Xj−1)−1xj

= β̂j−1 +
(X ′

j−1Xj−1)−1xj(yj − x′
j β̂j−1)

1 + x′
j(X

′
j−1Xj−1)−1xj

,

where, in the second line, we bring the second and third terms on a common denominator and also

note that the bracketed expression in the numerator is β̂j−1 by definition.

First define

dj =
[
1 + x′

j(X
′
j−1Xj−1)−1xj

]1/2 (104)
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and also define the recursive residuals ũj as

ũj =
yj − x′

j β̂j−1

dj
j = k + 1, . . . , n (105)

Hence, recursive residuals are defined only when the β can be estimated from at least k observations,

since for j less than k + 1, (X ′
j−1Xj−1)−1 would not be nonsingular. Hence the vector ũ can be

written as

ũ = CY, (106)

where

C =




−x′
k+1(X

′
kXk)−1X′

k

dk+1

1
dk+1

0 0 . . . 0
−x′

k+2(X
′
k+1Xk+1)−1X′

k+1
dk+2

1
dk+2

0 . . . 0
...

. . .
...

−x′
n(X′

n−1Xn−1)
−1X′

n−1
dn

1
dn




. (107)

Since the matrix X ′
j has j columns, the fractions that appear in the first column of C are rows with

increasingly more columns; hence the term denoted generally by 1/dj occurs in columns of the C

matrix further and further to the right. Thus, the element 1/dk+1 is in column k + 1, 1/dk+2 in

column k + 2, and so on. It is also clear that C is an (n − k) × n matrix. We then have

, Theorem 37. (1) ũ is linear in Y ; (2) E(ũ) = 0; (3) The covariance matrix of the ũ is

scalar, i.e., CC ′ = In−k ; (4) For all linear, unbiased estimators with a scalar covariance matrix,
∑n

i=k+1 ũ2
i =

∑n
i=1 û2

i , where û is the vector of ordinary least squares residuals.

Proof . (1) The linearity of ũ in Y is obvious from Eq.(106).

(2) It is easy to show that CX = 0 by multiplying Eq.(107) by X on the right. Multiplying, for

example, the (p − k)th row of C, (p = k + 1, . . . , n), into X , we obtain

−x′
p(X

′
p−1Xp−1)−1X ′

p−1

dp
Xp−1 +

1
dp

x′
p = 0.

It then follows that E(ũ) = E(CY ) = E(C(Xβ + u)) = E(u) = 0.

(3) Multiplying the (p − k)th row of C into the (p − k)th column of C ′, we obtain

1
d2

p

+
x′

p(X
′
p−1Xp−1)−1X ′

p−1Xp−1(X ′
p−1Xp−1)−1xp

d2
p

= 1

by definition. Multiplying the (p − k)th row of C into the (s − k)th column of C ′, (s > p), yields

[
−x′

p(X
′
p−1Xp−1)−1X ′

p−1

dp

1
dp

0 . . . 0

]



Xp−1

x′
p

x′
p+1

...




(X ′
s−1Xs−1)−1

ds

=
[−x′

p

dpds
+

x′
p

dpds

]
(X ′

s−1Xs−1)−1xs = 0

.
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(4) We first prove that C ′C = I − X(X ′X)−1X ′. Since CX = 0 by (2) of the theorem, so is

X ′C ′. Define M = I − X(X ′X)−1X ′; then

MC ′ = (I − X(X ′X)−1X ′)C ′ = C ′. (108)

Hence,

MC ′ − C ′ = (M − I)C ′ = 0. (109)

But for any square matrix A and any eigenvalues λ of A, if (A−λI)w = 0, then w is an eigenvector

of A. Since M is idempotent, and by Theorem 5 the eigenvalues of M are all zero or 1, the columns

of C ′ are the eigenvectors of M corresponding to the unit roots (which are n− k in number, becase

the trace of M is n − k).

Now let G′ be the n× k matrix which contains the eigenvectors of M corresponding to the zero

roots. Then, since M is symmetric, the matrix of all the eigenvectors of M is orthogonal and

[ C ′ G′ ]
[

C
G

]
= I.

Let Λ denote the diagonal matrix of eigenvalues for some matrix A and let W be the matrix of its

eigenvectors. Then AW = WΛ; applying this to the present case yields

M [ C ′ G′ ] = [ C ′ G′ ]
[

I 0
0 0

]
= [ C ′ 0 ].

Hence

M = MI = M [ C ′ G′ ]
[

C
G

]
= [ C ′ 0 ]

[
C
G

]
= C ′C.

But
n∑

i=k+1

ũ2 = Y ′C ′CY = Y ′[I − X(X ′X)−1X ′]Y =
n∑

i=1

û2.

Now define Sj by Sj = (Yj − Xj β̂j)′(Yj − Xj β̂j); thus Sj is the sum of the squares of the least

squares residuals based on the first j observations. We then have

Theorem 38. Sj = Sj−1 + ũ2
j .
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Proof . We can write

Sj = (Yj − Xj β̂j)′(Yj − Xjβ̂j) = Y ′
j (I − Xj(X ′

jXj)−1Xj)Yj

= Y ′
j Yj − Y ′

j Xj(X ′
jXj)−1X ′

jXj(X ′
jXj)−1X ′

jYj

(where we have multiplied by X ′
jXj(X ′

jXj)−1)

= Y ′
j Yj − β̂′

jX
′
jXjβ̂j + 2β̂j−1(−X ′

jYj + X ′
jXj β̂j)

(where we replaced (X ′
jXj)−1X ′

jYj by β̂j and where the third

term has value equal to zero)

= Y ′
j Yj − β̂′

jX
′
jXjβ̂j − 2β̂′

j−1X
′
jYj + 2β̂′

j−1X
′
jXj β̂j

+ β̂′
j−1X

′
jXj β̂j−1 − β̂′

j−1X
′
jXj β̂j−1

(where we have added and subtracted the last term)

= (Yj − Xj β̂j−1)′(Yj − Xjβ̂j−1) − (β̂j − β̂j−1)′X ′
jXj(β̂j − β̂j−1)

. (110)

Using the definition of Xj and Yj and the definition of regression coefficient estimates, we can also

write
X ′

jXj β̂j = X ′
jYj = X ′

j−1Yj−1 + xjyj = X ′
j−1Xj−1β̂j−1 + xjyj

= (X ′
jXj − xjx

′
j)β̂j−1 + xjyj

= X ′
jXj β̂j−1 + xj(yj − x′

j β̂j−1)

,

and multiplying through by (X ′
jXj)−1,

β̂j = β̂j−1 + (X ′
jXj)−1xj(yj − x′

j β̂j−1). (111)

Substituting from Eq.(111) for β̂j − β̂j−1 in Eq.(110), we obtain

Sj = Sj−1 + (yj − x′
j β̂j−1)2 − x′

j(X
′
jXj)−1xj(yj − x′

j β̂j−1)2. (112)

Finally, we substitute for (X ′
jXj)−1 in Eq.(112) from Bartlett’s Identity (Theorem 35), yielding

Sj = Sj−1 + (yj − x′
j β̂j−1)2×

×

[
1 + x′

j(X
′
j−1Xj−1)−1xj − x′

j(X
′
j−1Xj−1)−1xj − (x′

j(X
′
j−1Xj−1)−1xj)2 + (x′

j(X
′
j−1Xj−1)−1xj)2

1 + x′
j(X

′
j−1Xj−1)−1xj

]

from which the Theorem follows immediately, since ũj is defined as

(yj − x′
j β̂j−1)/(1 + x′

j(X
′
j−1Xj−1)−1xj).

We now briefly return to the case of testing the equality of regression coefficients in two regression

in the case of insufficient degrees of freedom (i.e., the Chow Test). As in Case 4, on p. 13, the number



20 Quandt

of observations in the two data sets is n1 and n2 respectively. Denoting the sum of squares from the

regression on the first n1 observations by û′
uûu and the sum of squares using all n1 +n2 observations

by û′
rûr, where the ûs are the ordinary (not recursive) least squares residuals, the test statistic can

be written as
(û′

rûr − û′
uûu)/n2

û′
uûu/(n1 − k)

.

By Theorem 37, this can be written as

(
n1+n2∑
i=k+1

ũ2
i −

n1∑
i=k+1

ũ2
i )/n2

n1∑
i=k+1

ũ2
i /(n1 − k)

=

n1+n2∑
i=n1+1

ũ2
i /n2

n1∑
i=k+1

ũ2
i /(n1 − k)

.

It may be noted that the numerator and denominator share no value of ũi; since the ũs are inde-

pendent, the numerator and denominator are independently distributed. Moreover, each ũi has zero

mean, is normally distributed and is independent of every other ũj , and has variance σ2, since

E(ũ2
i ) = E

[
(x′

iβ − ui − x′
iβ̂i−1)2

1 + x′
i(X

′
i−1Xi−1)−1xi

]

=
x′

iE
[
(β − β̂i−1)(β − β̂i−1)′

]
xi + E(u2

i )
1 + x′

i(X
′
i−1Xi−1)−1xi

= σ2.

Hence, the ratio has an F distribution, as argued earlier.

Cusum of Squares Test. We consider a test of the hypothesis that a change in the true values of

the regression coefficients occured at some observation in a series of observations. For this purpose

we define

Qi =

i∑
j=k+1

ũ2
j

n∑
j=k+1

ũ2
j

, (113)

where ũj represent the recursive residuals.

We now have

Theorem 39. On the hypothesis that the values of the regression coefficients do not change,

the random variable 1 − Qi has Beta distribution, and E(Qi) = (i − k)/(n − k).

Proof . From Eq.(113), we can write

Q−1
i − 1 =

∑n
j=i+1 ũ2

j∑i
j=k+1 ũ2

j

. (114)

Since the numerator and denominator of Eq.(114) are sums of iid normal variables with zero mean

and constant variance, and since the numerator and denominator share no common ũj , the quantity

z = (Q−1
i − 1)

i − k

n − k
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is distributed as F (n − i, i − k). Consider the distribution of the random variable w, where W is

defined by

(n − i)z/(i− k) = w/(1 − w)

. Then the density of w is the Beta density

Γ(α + β − 1)
Γ(α)Γ(β)

αα(1 − w)β ,

with α = −1 + (n − i)/2 and β = −1 + (i − k)/2. It follows that

E(1 − Qi) =
α + 1

α + β + 2
=

n − i

n − k
,

and

E(Qi) =
i − k

n − k
. (115)

Durbin (Biometrika, 1969, pp.1-15) provides tables for constructing confidence bands for Qi of

the form E(Qi) ± c0.


